EPA's PM Augmentation Procedure

Roy Huntley, EPA Stephen Colodner, Transystems Dr. Jonathan Dorn, Eastern Research Group

PM Augmentation

- Describe Problem
- EPA's Fix PM Augmentation
- Weaknesses of Current PM Aug Methodology
- Suggested Improvements
- ▶ EPA Recommendations for Submitters

Definitions

▶ PM10-FIL

 filterable particulate matter less than or equal to 10 microns in aerodynamic diameter, usually measured at stack conditions (elevated temperatures)

▶ PM2.5-FIL

 filterable particulate matter less than or equal to 2.5 microns in aerodynamic diameter, usually measured at stack conditions (elevated temperatures)

PM-CON

 condensible particulate matter, which is matter that exists as a vapor at stack conditions but exists as a liquid or a solid after exiting the stack and cooled by ambient conditions.

PM10-PRI

- The sum of PM10-FIL and PM-CON
- PM2.5-PRI
 - The sum of PM2.5-FIL and PM-CON

The Goal

- Consistency among PM species
 - Keeping it real
 - Data needs to make sense
- Completeness in terms of all PM species present for every process

The Problem

- Submitted data can violate certain known physical relationships
 - Example, PM2.5-FIL > PM10-FIL
- PM data submitted to the EPA is sometimes not complete.
 - Missing PM species
 - Example, PM10-PRI only PM pollutant code submitted

Our job

- Resolve apparent errors
- Augment missing PM species
- Note that current methodology only applies to point sources

PM Augmentation Methodology, Resolve Inconsistencies

- First Step is to review submitted data and resolve inconsistencies
 - If PM10-FIL>PM10-PRI, then PM10-PRI is replaced with null
 - If PM2.5-FIL>PM2.5-PRI, then PM2.5-PRI is replaced with null
 - If PM10-FIL+PM-CON>PM10-PRI, then PM10-PRI is replaced with sum of PM10-FIL+PM-CON
 - If PM2.5-FIL+PM-CON>PM2.5-PRI, then PM2.5-PRI is replaced with sum of PM2.5-FIL+PM-CON
 - If PM2.5-PRI>PM10-PRI, then PM10-PRI is replaced with PM2.5-PRI
 - If PM25-FIL> PM10-FIL, PM10-FIL is replaced with PM2.5-FIL

Resolve Inconsistencies, Continued

- ▶ If PM-CON>PM2.5-PRI or PM-CON>PM10-PRI, then 2 cases are considered.
 - PM-CON is much higher than PMxx-PRI, which is inconsistent, so if difference is larger than 10%, then PM-CON is replaced with null
 - PM-CON is higher than PMxx-PRI but not by much and might be rounding error, so if difference is by less than 10%, then PM-CON is replaced with PMxx-PRI

Trivial Updates

- Addition and Subtraction based on the definition of filterable and primary.
 - Example, If both PM10-FIL and PM-CON are available, then PM10-PRI = PM10-FIL + PM-CON.

Non-Trivial Updates

- Non-Trivial updates uses a process based on the <u>PM Calculator</u>, which is an EPA software program (no longer supported) that used particle size information from AP42 to fractionate filterable PM data
 - Appendix B.1
 - PARTICLE SIZE DISTRIBUTION DATA AND SIZED EMISSION FACTORS FOR SELECTED SOURCES
 - Appendix B.2
 - GENERALIZED PARTICLE SIZE DISTRIBUTIONS
 - Are used to convert PM10-FIL to PM25-FIL and vice versa
- Converted PM Calculator information into MS Access® files
 - Need SCC and PM controls
- Also has process to produce records with condensible emissions

emissions, and controlled size specific emission is shown in Figure B.2-1. A blank Calculation Sheet is provided in Figure B.2-2.

THE CHARLES OF CHICAMATON OF CHICAMATON OF CHICAMATON C

Table B.2-3. TYPICAL COLLECTION EFFICIENCIES OF VARIOUS PARTICULATE CONTROL DEVICES^a (%)

AIRS		Particle Size (μm)		
Code ^b	Type Of Collector	0 - 2.5	2.5 - 6	6 - 10
001	Wet scrubber - hi-efficiency	90	95	99
002	Wet scrubber - med-efficiency	25	85	95
003	Wet scrubber - low-efficiency	20	80	90
004	Gravity collector - hi-efficiency	3.6	5	6
005	Gravity collector - med-efficiency	2.9	4	4.8
006	Gravity collector - low-efficiency	1.5	3.2	3.7
007	Centrifugal collector - hi-efficiency	80	95	95
800	Centrifugal collector - med-efficiency	50	75	85
009	Centrifugal collector - low-efficiency	10	35	50
010	Electrostatic precipitator - hi-efficiency	95	99	99.5
011	Electrostatic precipitator - med-efficiency boilers other	50 80	80 90	94 97
012	Electrostatic precipitator - low-efficiency boilers other	40 70	70 80	90 90
014	Mist eliminator - high velocity >250 FPM	10	75	90
015	Mist eliminator - low velocity <250 FPM	5	40	75

Sample Calculation

- Process = industrial boiler burning distillate oil, reported PM10-FIL emissions of 16.0 tons.
 - \circ SCC = 10200501
 - PM controls = none
- To estimate PM25-FIL, use PM Calculator File, select SCC, and set both primary and secondary controls to "999" (uncontrolled), get multiplier

Sample Calculation, Cont

- PM25-FIL = PM10-FIL * conversion factor
- Conversion factor = 12.5/50 = 0.25
- \blacktriangleright 16.0 tons * 0.25 = 4.0 tons

PM Condensibles

- PM calculator only for filterable PM
 - PM-FIL to PM10-FIL and PM25-FIL and vice versa
- For PM condensables, we use AP42 (again)
 - Ratio of Emission Factors to calculate missing PM emissions.
- Example section 1.3 of AP–42,
 - PM10-FIL emission factor = 1.0 lbs/thousand gallons (table 1.3-6, AP42)
 - PM-CON emission factor = 1.3 lbs/thousand gallons (table 1.3-2, AP42)
 - Multiply PM10-FIL emissions by the ratio of PM-CON to PM10-FIL will get you PM-CON

Sample Calculation using Condensables

- PM10-FIL Emissions* (PM-CON EF/PM10-FIL EF) = PM-CON Emissions
- \blacktriangleright 16.0 tons * 1.3/1.0 = 20.8 tons
- ▶ PM-CON + PM10-FIL = PM10-PRI
- \rightarrow 20.8 + 16.0 = 36.8 tons
- PM-CON + PM25-FIL = PM25-PRI
- \rightarrow 20.8 + 4.0 = 24.8 tons

Another Example

 Spreader Stoker Industrial Boiler burning coal (SCC=10200204), reports 67 tons of PM10– PRI, need rest of PM species

Coal Fired Boiler

- PM10-PRI * conversion factor = PM10-FIL
- ▶ 67 tons * 0.926966 = 62.1tons
- ▶ (PM10-PRI) (PM10-FIL) = PM-CON
- \triangleright 67 62.1 = 4.9 tons

Left overs

- SCC coverage is not 100%, so records remain null after procedure
- To ensure that all PM10-PRI and PM25-PRI records are populated, we fill in remaining null records as follows

Pollutant with Null Record	Gap-filling Priority List (Null Record Set Equal to First Non-null Value in List)		
	1. PM2.5-FIL		
DM2.5 DDI	2. PM10-PRI		
PM2.5-PRI	3. PM10-FIL		
	4. PM-CON		
DM10 DD1	1. PM10-FIL		
PM10-PRI	2. PM2.5-PRI		

Batch Processing Tool

- EPA Contractor has built batch processing tool that performs the tasks described in this presentation
 - Pre-screening of data and self consistency checks
 - Trivial updates
 - Non-trivial updates
 - Repeat self consistency checks
- MS Access Tool
 - Not available for public use

PM Augmentation Assumptions and Shortcomings

- PM Augmentation uses AP42 emission factors to create other PM species
 - Natural gas corrections have been made
- PM Augmentation uses EPA default values for control efficiencies
- Only 2 control devices were considered
- For coal, assumes ash content of 8%
- SCC coverage is not 100%
 - Remaining null values filled in with other data
- When deriving PM species containing condensables, potential for underestimate of PMxx-PRI and PM-CON
 - Mostly affect coal combustion

Future Improvements (if resources are available)

- Improve SCC coverage for Point
- Expand utility of Tool to Include Nonpoint Sources
- Improve Batch Processing Tool

Recommendations to Submitters

- As a minimum, Submit PMxx-FIL and PM-CON only
- Or PMxx-PRI and PM-CON only
- Let us do the simple math